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Executive Summary 
This report presents the findings of a CETaS research project examining the use of machine learning 
(ML) for intelligence analysis within the UK national security context. The findings are based on in-
depth interviews and focus groups with national security practitioners, policymakers, academics and 
legal experts.  

The aim of the research was to understand the technical and policy considerations arising from the 
use of ML within an intelligence analysis context. Specifically, the research explored how to calibrate 
the appropriate level of trust users should have in machine-generated insights, and best practice for 
integrating ML capabilities into the decision-making process of an analyst. 

Intelligence analysts working in national security face a major challenge in coping with massive 
volumes of data that may yield crucial insights to current and future events. The ongoing global 
expansion of data presents both risks (that a crucial ‘needle in the haystack’ is missed), and also 
opportunities (more ‘haystacks’ to look for new ‘needles’ to gain deeper insights). The use of ML offers 
real potential to simultaneously reduce such risks and to pursue such opportunities.  

There are important considerations to make when deploying ML to support a human decision-making 
process, including (i) the challenge of explaining and understanding why, and how, the model is 
functioning the way it does, and (ii) the risk of harm to society and citizens if ML capabilities are used 
inappropriately. It is recognised that clear guidance on the safe and effective use of ML is required 
prior to its widescale adoption in high-stakes contexts such as national security. 

ML explainability is multifaceted and can refer either to technical properties of model performance, 
such as expected precision and recall rates at different thresholds (sometimes described as ‘global 
explanations’); or to the specific factors the model took into account to arrive at a particular prediction 
(sometimes described as ‘local explanations’). This study sought to examine intelligence analysts’ 
requirements and priorities regarding both global and local model explanations.  

Research conducted for this study involved examining the decision-making process and analytic 
workflow of intelligence analysts, to understand the technical, behavioural and policy considerations 
that must be taken into account when integrating ML capabilities into this process. The report’s key 
findings and recommendations are as follows: 

1. ML is most valuable in characterising, discovering and triaging information from large 
volumes of disparate data. This offers the best return on investment for ML in intelligence 
analysis in the short-term as it addresses some of the most pressing needs of the intelligence 
community. These applications also present a more manageable risk of using ML, as key 
decisions (such as those pertaining directly to individuals) are still taken by the analyst.  

2. How an analyst treats an output from a ML model is highly context-specific. The meaning 
and confidence that an analyst assigns to machine-generated information is shaped by the 
current context (urgency of decision-making, the priority of the operation, and the perceived 
impact of subsequent decisions on resources and outcomes). Identifying and understanding 
the different contexts in which an analyst may use a ML model should therefore be central to 
the process of developing, testing and verifying a ML model.  
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3. The lack of technical explainability of many ML systems is widely acknowledged. 
‘Explainable AI’ is a growing sub-discipline of data science research, and technical approaches 
are gaining traction to help explain the behaviour of sophisticated ML models. Whilst the use 
of such techniques is likely to remain of interest to data scientists and ML engineers, 
mathematical explainability methods may be of limited utility in improving the analyst’s real-
world understanding of the behaviour and performance of a model. 

4. Increasing the analyst’s trust in ML capabilities involves both trust in the ML output and 
trust in the whole system, of which the ML is one part. Analysts do not respond and commit 
effort to understand an output from a ML model alone, but also take into consideration other 
factors such as their experience of the model’s prior performance, whether the model has 
been formally approved for operational use, and the nature of the task that the analyst is 
performing. 

5. ML should be designed from the outset to be integrated into the intelligence analyst’s 
toolset and workflow. The most effective application of ML should come from understanding 
the current work environment of the analyst. This requires a deeper understanding of human 
factors, usability requirements, and the psychology of decision-making to be integrated into 
the processes of developing the model (data science) and the tools for interacting with the 
model (software engineering). 

6. The type and amount of technical information about a ML model that is provided to analysts 
should be context-specific, user-specific and interactive. The level of information provided 
to an analyst should improve the transparency and interpretability of the model and should 
consist of two parts: mandatory information (context-specific) and custom information which 
is selected by the analyst (user-specific). The presentation of both types of information should 
be unambiguous and make it easy for the analyst to traverse different layers of explanation 
(for instance through the use of click-through interfaces). 

7. The complexity of explanation should be determined by the complexity of the problem. If a 
problem is cognitively straightforward for a human an explanation of an ML solution to that 
problem is unnecessary and does not help decision-making. However, for more complex tasks 
which cannot be easily completed by a human, it is more important for the model to provide 
some reasoning as to how it arrived at a certain output. There will also be circumstances 
where a local explanation is neither helpful nor appropriate.   

8. Analysts should be included in the prototyping and testing of a ML model and associated 
graphical user interface (GUI). This should elicit the appropriate level of explanation required 
to support the decisions of the analyst. Tuning the performance of a model (for instance, 
setting acceptable limits on false positive / false negative thresholds) should be done with 
diverse representation from the analyst community. Mandatory involvement of analysts in 
testing of ML models should increase their overall confidence and adoption. The results of 
these tests should be routinely shared with partner organisations deploying similar ML-
enabled systems. 

9. Different thresholds may be required for different uses of the same model and are key to 
analyst confidence and need to be continuously reviewed. In some circumstances analysts 
can tolerate a higher rate of false positives (e.g. in high-priority operations where the risks of 
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missing something important may be catastrophic) that, in other circumstances, would not be 
acceptable. False negatives are generally more problematic within intelligence analysis, due 
to the risk of potentially important information ‘slipping through the net’.  

10. Language for discussing and explaining ML models should be standardised across the 
national security community. Values such as the confidence level of a classifier should be 
presented to a recognised standard such as the PHIA (Professional Head of Intelligence 
Assessment) Probability Yardstick. This information should be presented both linguistically 
and numerically where possible.  

11. Data science should be offered as a support service to analysts. For example, a small team 
of data scientists who are dedicated to helping analysts who are using ML models interpret 
results and investigate concerns. Close support to analysts should increase their level of 
understanding of the behaviour and performance of ML models. This should mitigate the risk 
of inappropriate use of a ML model whilst simultaneously improving the overall aptitude and 
awareness of the analyst community in the use of ML models. 

12. Effective adoption of ML requires a system-level approach. The design of a ML model should 
consider its effect on existing policies and practices including any necessary legal 
authorisations, the criticality of feedback from analysts on model performance, and 
consideration of the whole life costs of deploying and maintaining the ML model. 
Organisational policies and processes may need to be updated to account for these additional 
requirements.  

13. Additional training and learning materials should be made available to enable those using 
or overseeing the use of ML systems to acquire a minimum level of data science and ML 
literacy. The ability to understand technical properties such as precision, recall and accuracy 
was cited as the minimum level of literacy that an analyst should have to ensure they have a 
sufficient understanding of the performance, and therefore the utility, of a ML model. 

Further research should aim to: 

i. Identify technical and policy considerations for more advanced use of ML in human-machine 
teaming (such as non-classification use cases). 

ii. Understand the explainability requirements for ML in fully automated decision-making 
applications. 

iii. Develop methodologies for understanding the analyst workflow to guide ML application 
development, and embed behavioural and decision science into software engineering 
practices. 

iv. Systematically assess how the explainability requirements of different users varies across 
background, their work context and demographic.  

v. Develop a standardised lexicon of terminology for communicating the confidence associated 
with ML-supported analysis based on the PHIA probability yardstick. 
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1. Introduction 
Intelligence analysis in the national security context seeks to gather information and answer questions 
about a target or group in support of current operations and future intent.1 Key to an intelligence 
analyst’s ability to do this effectively is acquiring and examining relevant data to identify threats and 
opportunities more quickly, making the best use of all available data sources.  

One of the most pressing challenges for analysts is being able to keep up with the exponentially 
growing volume and variety of data that is now available. New software techniques such as those 
incorporating machine learning (ML) have introduced powerful analytical capabilities – all of which 
hold significant potential to help analysts process more data and information at a speed that is 
relevant to support decision-making.2  

Decisions made in national security can involve serious consequences for society and the individual, 
particularly as intelligence and law enforcement agencies are granted exceptional legal powers to 
undertake activity that may interfere with individuals’ human rights. For this reason, enhanced policy 
and guidance is required regarding the implementation of ML within a national security decision-
making process. Specifically, there is a need to address how decision-making is affected by increased 
automation of high-stakes information processing tasks, and how ML capabilities should be developed 
to ensure that analysts can have confidence and skill in using them appropriately. 

1.1 The ‘black box’ problem 

ML performance is significantly improving in speed and accuracy,3 but is also becoming more complex 
and challenging to understand. The increasing use of advanced ML techniques such as deep neural 
networks has made it more difficult for human operators to understand how machine learning models 
arrive at their outputs.4 This uncertainty inhibits non-technical audiences from understanding the 
reasoning underpinning ML recommendations in decision-support functions, with outputs seemingly 
resulting from a ‘black box’ and earning this phenomenon the designation the ‘black box’ problem.5 It 
will often be possible for the model output to provide a classification (e.g. ‘high risk’ or ‘low risk’;  
‘civilian vehicle’ or ‘military vehicle’), but operators may have insufficient information to understand 

 
1 The UK Government describes intelligence analysis as 'adding value through the process of taking known information about situations 
and entities of strategic, operational, or tactical importance and characterising the known and the future actions in those situations.' 
https://www.gov.uk/government/organisations/civil-service-intelligence-analysis-profession/about 
2 Throughout this report, ML and artificial intelligence (AI) are used synonymously, although we recognise that ML is a specific sub-
discipline of the wider field of AI. 
3 Lydia P. Gleaves, Reva Schwartz, and David A. Broniatowski, “The role of individual user differences in interpretable and explainable 
machine learning systems,” ArXiv (2020).; Jianlong Zhou, Fang Chen and Andreas Holzinger, “Towards explainability for AI fairness,” 
International workshop on extending explainable AI beyond deep models and classifiers (2022).; Madalina Busuioc, “Accountable artificial 
intelligence: Holding algorithms to account,” Public Administration Review, no. 81 (2020): 825-836. 
4 Lydia P. Gleaves, Reva Schwartz, and David A. Broniatowski, “The role of individual user differences in interpretable and explainable 
machine learning systems,” ArXiv (2020). 
5 Alexander Babuta and Marion Oswald, “Data analytics and algorithms in policing,” RUSI Occasional Papers (2019).; Andreas Holzinger et 
al., “Explainable AI methods – a brief overview”, International Workshop on Extending Explainable AI Beyond Deep Models and Classifiers,  
(2022).; Michael Veale, Max Van Kleek and Reuben Binns, “Fairness and accountability design needs for algorithmic support in high-stakes 
public sector decision-making,” CHI. (2018).; Jianlong Zhou, Fang Chen and Andreas Holzinger, “Towards explainability for AI fairness,” in 
xxAI - Beyond Explainable AI, no. 13200 (2022):  375-386.; Cynthia Rudin, “Stop explaining black box machine learning models for high 
stakes decisions and use interpretable models instead.” Nature Machine Intelligence 1 (2019): 206-215.; Shraddha Mane and Dattaraj Rao, 
“Explaining network intrusion detection system using explainable AI framework,” ArXiv (2021).   
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the logic the model followed and which components of the input data the model assessed to be 
important to predict an outcome.6 

The ‘black box’ problem refers to ML capabilities that cannot be directly interpreted nor understood 
through examination. For example, Google’s BERT natural language processing model consists of 110 
million parameters.7 Examining each of those parameters is unfeasible and would not yield an 
understanding of the logic of the model. As such, large ML models are currently treated as non-
interpretable, and eliciting an understanding about the behaviour of such models is often done by 
modifying the inputs to the model and monitoring the subsequent outputs that the model produces 
(counterfactual explanations).8 Hence, such ML models are described in the academic literature as a 
‘black box’ where only the inputs and outputs can be directly interpreted and understood, not the 
inner workings of the system. 

Moreover, important factors such as the training data used to build the model, the confidence level 
associated with any given prediction, or the variation in accuracy by context are often not apparent 
to the operator. Accuracy rates can often be misleading, as they may vary considerably when a model 
is deployed on a new dataset whose distribution varies significantly from the test data. Without the 
ability to comprehend the reasoning underpinning AI systems (and the limitations and uncertainties 
inherent in the model), there is a risk that human operators may over-trust or under-trust AI systems, 
particularly when used in high-stakes decision-making contexts such as defence and security.  

This potential lack of model explainability is further exacerbated by advances in ML, which are 
increasing the ability of systems to learn, decide and act autonomously.9 This challenge is 
compounded when developing a complex ML system, i.e., multiple models operating in sequence as 
part of an automated analytic pipeline. Model performance and limitations are not static, but will 
change when the model is retrained and revalidated with new data. 

In general, an inverse correlation between the performance and the interpretability of a model may 
exist. The higher the performance at a task (e.g., ability to generalise across a wide range of data) the 
larger and more complex the model is likely to be. Hence, there is a tendency for more powerful ML 
models – such as deep learning neural networks – to be less interpretable. This presents a conundrum: 
how to benefit from the predictive power of non-interpretable models, whilst managing the risk of 
the lack of explanation or predictability of those models and, ultimately, the decision-making 
accountability if things go wrong.  

 
6 Madalina Busuioc, “Accountable artificial intelligence: Holding algorithms to account,” Public Administration Review, no. 81 (2020): 825-
836. (2020).; Sunil Aryal, “Levels of explainable artificial intelligence for human-aligned conversational explanations,” Artificial intelligence 
299 (2021).  
7 Jacob Devlin et al., “BERT: Pre-training of deep bidirectional transformers for language understanding,” ArXiv (2019). 
8 Madalina Busuioc, “Accountable artificial intelligence: Holding algorithms to account,” Public Administration Review, no. 81 (2020): 825-
836. 
9 David Gunning and David W. Aha, “DARPA’s explainable artificial intelligence (XAI) program,” AI Magazine, no.40 (2019): 44-58.   
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1.2 Implications of the black box problem for analytic 
tradecraft  

Recent research has discussed how ML systems are increasingly deployed as part of a human-machine 
team (HMT).10 Given the challenges outlined above, national security organisations require a number 
of assurances before deploying a HMT capability to support intelligence analysis and subsequent 
decision-making.  

The challenges of applying ML-supported decision-making are amplified in the national security 
context given the degree of discretion and professional judgment that an analyst uses to make a high-
stakes decision with uncertain and incomplete information, and this may be difficult to quantify or 
encode accurately in a ML system. Human operators may not be able to fully explain every factor they 
have taken into account when arriving at a certain decision, but they must be able to provide sufficient 
explanation to demonstrate that the action taken was necessary and proportionate.11 This requires an 
explanation of their reasoning, hypotheses and conclusions. What constitutes a ‘sufficient 
explanation’ in this regard is highly context-specific, and automated systems are not capable of 
providing the same type of subjective reasoning and rationale, drawing on their own professional 
judgement in the way that human operators are expected to do. Furthermore, human users’ ability to 
fully explain their reasoning may be harder where an algorithmically-derived insight or prediction has 
shaped the decision that they are subsequently required to justify or defend.  

The lack of interpretability of ML could lead to challenges across the intelligence analysis process, such 
as: 

• Creating missed opportunities to transform data to actionable intelligence, and casting doubt 
on whether the classifications and predictions made are sufficiently accurate.12 

• Hindering algorithmic assessments from being challenged as to whether the decisions and 
the processes underpinning their assessments are relevant, fair, proportionate and not based 
on discriminatory inputs.13  

• Obfuscating whether a particular type of model serves the aims of a particular context.14 ML 
systems are developed for particular use cases that may not be appropriate for other 
applications and sometimes these systems are procured off-the-shelf, so their limitations may 
not be known when they are first deployed.  

 
10 Mariarosaria Taddeo et al., “Artificial Intelligence for National Security: The Predictability Problem”, CETaS Research Reports (September 
2022). 
11 ‘Investigatory Powers Act 2016’ (UK); ‘Human Rights Act 1998’ (UK).  
12 Ankit Tweari, “Decoding the Black Box: Interpretable methods for post-incident counter-terrorism investigations,” WebSci ’20 
Companion (2020). 
13 Jianlong Zhou, Fang Chen and Andreas Holzinger, “Towards explainability for AI fairness,” in xxAI - Beyond Explainable AI, no. 13200 
(2022):  375-386.; Zeynep Akata et al., “Hybrid intelligence: augmenting human intellect with collaborative, adaptive, responsible and 
explainable artificial intelligence,” Computer (2020).; Alexander Babuta and Marion Oswald, “Data analytics and algorithms in policing,” 
RUSI Occasional Papers (2019).; Alexander Babuta and Marion Oswald, “Machine learning predictive algorithms and the policing of future 
crimes: governance and oversight,” in Policing and Artificial Intelligence (Oxford: Routledge, 2019). 
14 Alexander Babuta, Marion Oswald and Christine Rink, “Machine learning algorithms and police decision-making: legal, ethical and 
regulatory challenges,” RUSI Whitehall Report (2018).; Marion Oswald and Alexander Babuta, “Machine learning predictive algorithms and 
the policing of future crimes: governance and oversight,” in Policing and Artificial Intelligence (Oxford: Routledge, 2019). 
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• Casting doubt on who should take accountability for decisions. Opaque ML models may 
reinforce ambiguity surrounding whether accountability should be assigned to the model 
itself, its developer, a senior representative within the organisation, or the human-in-the-
loop, in circumstances where the human operator is unable to comprehend the overall 
decision-making process. 

The research found that it is not common practice to design ML-enabled information systems with 
explainability and interpretability as a formal requirement. However, such systems are increasingly 
being deployed across the UK public sector, including in criminal justice, local government and 
healthcare.15 Similarly, various policy documents in recent years have suggested that ML will become 
an increasingly integral component of national security analysis and decision-making processes.16 

Decisions in the national security context are governed by a well-established system of authorisation, 
audit, oversight and external scrutiny, which has been refined and developed over many decades. The 
granularity of information required to explain analysts’ decisions varies considerably across use cases, 
and some higher-stakes contexts demand a much higher degree of explanation than others.17 It would 
therefore be unreasonable to strive for ‘full transparency’ of decisions across all contexts, whether 
ML-supported or otherwise. It remains to be established whether a higher standard of interpretability 
is required in the outputs and processes governing ML-supported decisions. Moreover, even if a higher 
standard of interpretability is not required, there are unresolved considerations surrounding the types 
and ranges of error or risk that are more ‘acceptable’ than others in different security contexts.18  

To further complicate matters, recent strategic policy documents have emphasised a push towards 
more synergy across services and allied nations (e.g. through multi-domain integration).19 However, 
as ML-enabled information systems become more complex and interconnected, the interpretability 
challenges mentioned above could become compounded, meaning practitioners may lack the full 
picture of potential risks and vulnerabilities across a complex integrated system. 

The field of explainable AI is an active, global research effort to tackle the problem of non-
interpretable ML techniques such as large neural networks, and recent research shows promise in 
addressing the ‘black box’ problem.20 Such research is encouraging but nascent, and will take time to 
diffuse into standard data science and machine learning practices. As such, the ‘black box’ problem 
remains an inherent characteristic of most deep neural networks and large models. With research 
efforts focussing on developing ever-increasingly complex models trained on larger, more diverse 
datasets, this challenge is only likely to grow. This must be taken into account when developing future 

 
15 Lina Dencik et al., “Data scores as governance: investigating uses of citizen scoring in public services,” (2018).; Jianlong Zhou, Fang Chen 
and Andreas Holzinger, “Towards explainability for AI fairness,” in xxAI - Beyond Explainable AI, no. 13200 (2022):  375-386.; Marion 
Oswald and Alexander Babuta, “Machine learning predictive algorithms and the policing of future crimes: governance and oversight,” in 
Policing and Artificial Intelligence (Oxford: Routledge, 2019); Alexander Babuta and Marion Oswald, “Machine learning algorithms and 
police decision-making: legal, ethical and regulatory challenges,” RUSI Whitehall Report (2018). 
16 Office for Artificial Intelligence, Department for Digital, Culture, Media and Sport and Department for Business, Energy and Industrial 
Strategy, National AI Strategy (2021).; Ministry of Defence, Defence Artificial Intelligence Strategy (2022).; GCHQ, Pioneering a New 
National Security: The Ethics of Artificial Intelligence (2021).; Alexander Babuta, Marion Oswald and Ardi Janjeva, “Artificial intelligence 
and UK national security: Policy considerations,” RUSI Occasional Paper (2020). 
17 Marion Oswald, “Algorithm-assisted decision-making in the public sector: framing the issues using administrative law rules governing 
discretionary power,” Philosophical Transactions A (2018). 
18 Alexander Babuta, Marion Oswald and Christine Rinik, “Machine learning algorithms and police decision-making,” RUSI Whitehall Report 
(2018). 
19 Alun Preece et al., “Explainable AI for intelligence augmentation in multi-domain operations,” ArXiv (2019). 
20 Pantelis Linardatos, Vasilis Papastefanapoulos and Sotiris Kotsiantis, “Explainable AI: A Review of Machine Learning Interpretability 
Methods,” Entropy  23 no. 1 (2020): 18. 
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policy and guidance for the use of machine learning systems in higher-stakes contexts, particularly in 
terms of their potential impact on human decision-making processes.   

1.3 Research aims and objectives  

This study sought to understand: where ML is viewed as bringing utility in the intelligence analysis 
workflow, or where it could in future.; the technical and human considerations associated with 
embedding an ML system within a complex decision-making process; and how the technical behaviour 
of the model needs to be explained to different users to provide sufficient confidence in the system.  

Specifically, the research aimed to address the following three research questions:  

RQ1: How does the availability, type and format of an AI explanation influence the level of 
decision-making confidence of the user?  

RQ2: What information do intelligence analysts require regarding the performance, 
robustness and predictability of an AI system, in order to maintain the appropriate degree of 
decision-making confidence and accountability for the task at hand? How do we avoid 
automation bias or over-trust in AI systems? 

RQ3: How does the decision-making confidence and risk appetite of different AI users vary 
across context and background?  

The research focused on two aspects of AI explainability, which can loosely be described as ‘local 
explainability’ and ‘global explainability’. Local explainability refers to output-level information 
regarding why the model has generated a particular output (for instance, the features taken into 
account to calculate a particular probability score). Global explainability refers to model-level 
technical details related to key values such as precision, recall and classification thresholds.21 

It soon became apparent in the research that the types of explanations analysts require are not the 
typical explanations described in the academic literature on explainable AI. Instead, this study takes a 
broader view of the technical requirements across the full spectrum of humans in-the-loop that may 
be required to interface with an ML system.  

Moreover, the research found that to develop sufficient confidence in the ML system, technical 
explanations alone are not enough and need to be supported by policy requirements that create a 
supportive ecosystem for responsible use of ML in intelligence analysis. Explainability is only one 
method to counteract the black box problem and complexities associated with ML modelling. The 
requirement for technical explainability needs to be examined alongside the necessary adaptations of 
organisational structures, policies and training programmes for the use of ML for intelligence analysis. 
All these issues and more are explored in detail in the following sections.  

 
21 Precision and recall are key metrics used to describe machine learning performance. ‘Precision’ describes what proportion of positive 
identifications were correct, and ‘recall’ describes what proportion of actual positives was identified correctly. The higher the precision, 
the lower the false positive rate; and the higher the recall, the lower the false negative rate. The ‘classification threshold’ is the point at 
which the model classifies a data item into a target category (e.g. a classification threshold set at 0.99 would only create an alert if the 
model identified a 99% or higher probability that the target variable belongs to a certain class).  
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1.4 Methodology  

Research for this study was conducted over a three-month period from July – September 2022. The 
analysis contained in this report is drawn from a literature review on explainable AI, and interviews 
with 18 respondents including operational intelligence analysts, legal experts, behavioural scientists, 
human factors engineers, and defence and security research organisations. 

Research participants were identified using a purposive, non-probabilistic sampling strategy. A focus 
was on identifying individuals with direct experience of using, developing, overseeing or researching 
ML and related analysis tools within a national security context. A semi-structured interview guide 
was developed to ensure a broadly consistent line of questioning across interviews, while allowing 
flexibility to pursue other lines of enquiry identified in the course of discussions. Interviews were 
conducted on an anonymous, non-attributable basis.  

Interview data was analysed following a general inductive approach, whereby the focus is on 
extracting meaning from data and categorising data into relevant themes and sub-categories. The 
sections of this report broadly correspond to the core themes identified through this analysis process. 
Throughout this report, an anonymised coding system is used to refer to interview data. The following 
prefixes are used to indicate the category of research participant to which interview data refers:  

G = Government respondent  

L = Legal expert  

INT = International expert 

This research was inevitably limited in scope. The focus of this study is on ML to support analysts’ 
sensemaking of data as part of a decision-support function. The use of ML for automated decision-
making in intelligence analysis was not examined in detail, because stakeholders stated clearly that 
decision-support tools have more near-term potential for implementation. Moreover, this report 
focuses primarily on the use of machine learning classification models (‘classifiers’) within an 
intelligence analysis context. Other forms of artificial intelligence – such as the use of ML for data 
enhancement or data generation – are not the direct focus of this study. Finally, due to the sampling 
method used, it was not possible to comprehensively evaluate the specific differences in decision-
making processes across intelligence analysts working in different fields, organisations and mission 
areas (see Section 5 for corresponding proposals for further research). 

The remainder of this report is structured as follows. Section 2 summarises cross-cutting findings 
emerging from the research regarding the importance of decision-making context and the stage in the 
analytic workflow where ML is deployed. Section 3 discusses specific technical requirements identified 
in the research as important to consider when developing ML systems for use in intelligence analysis. 
Section 4 explores the organisational policy considerations associated with deploying ML systems into 
the intelligence workflow. Finally, Section 5 concludes by highlighting priority areas for further 
research.  
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2. Cross-cutting findings  
The research first investigated the sequence of steps required to consider how ML might be integrated 
into an intelligence analysis workflow. The literature review suggested that, in the first instance, it 
would be important to engage with users to understand where in the analytic workflow ML would 
bring the most utility and could help address challenges users encounter, as well as how best to 
manage the new risks that ML could pose. This investigation highlighted that user acceptance of ML 
in intelligence analysis was highest in the information filtering, categorisation and triage stages of 
analytic tradecraft (rather than deriving insights at the level of individual data points). 

This section explores the context of an intelligence analyst’s workflow, and the points in this process 
where ML systems could provide the most value.  

2.1 The importance of context 

Engagement with potential users of ML-enabled tools highlighted that it would be important not just 
to explain the model, but to design the overall experience of using the model from the analyst or 
decision-maker’s perspective, and incorporate all the assurances required to have confidence in the 
ML output. With this in mind, the context of the decision process the ML is used to inform was 
repeatedly mentioned as the single most important consideration in the development of a ML system 
for use in the intelligence context.  

Interviewees agreed unanimously that ML explanations need to be designed with a specific context in 
mind. The same ML capability could be deployed for numerous purposes, and a system that has 
relatively low-risk consequences in a commercial context may be associated with a much higher level 
of risk when deployed in an intelligence context. For example, recommender algorithms prioritise 
films or songs based on consumers’ past choices and are relatively innocuous with low-risk 
consequences, so do not require significant explanations. This is in stark contrast to a recommender 
system that may be used to inform intelligence analysts’ conclusions, which may subsequently result 
in direct action being taken towards an individual. Furthermore, the same model could be used to 
support longer-term and lower-priority analysis tasks, or very high-priority and time-sensitive 
operations. For this reason, it is neither feasible nor desirable to prescribe ‘model-level explainability 
requirements’ for a single model that may be used in multiple settings.  

Intelligence analysts are typically seeking, extracting and identifying ‘needles from haystacks,’ or 
useful details and patterns from large amounts of data in multiple stages, involving highly manual data 
analysis that entails collecting and tagging enormous volumes of text, visual and audio information 
from various sources alongside structured data.22  There are a limited number of individuals who can 
review and translate material, creating an enormous burden of effort that could lead to cognitive 
overload for analysts.23    

These combined activities help the analyst to piece together an understanding of the ‘big picture’ 
which can support decision-making. Various consumers and decision-makers may exploit the 
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intelligence products that analysts produce, which could include senior decision-makers outside the 
analyst’s organisation such as other government departments or other nations’ intelligence 
agencies.24  

Operational tempo sometimes requires near real-time inputs from analysts potentially within 
minutes,25 but can also involve retrospective analysis that allows analysts to take time to develop an 
understanding of a threat or risk. Analysts’ intelligence outputs can feed into relatively low-stakes 
tasks, but can also feed into high-stakes decisions such as military action or arrests, so there is very 
little tolerance for error.  

Intelligence analysts are trained to make context-specific judgements in conditions of uncertainty 
when presented with incomplete, imperfect and fragmented information.26 For this reason, increasing 
the analyst’s trust in ML capabilities requires a trust model that involves both trust in the output and 
trust in the system. To illustrate with a human analogy, a team leader must have trust to delegate 
tasks to team members, building a mental model of who in the team can be trusted with specific types 
of work. Without buy-in from both decision-makers and analysts, ML-enabled tools that may have 
utility in intelligence analysis could fail to achieve their potential, if users do not have the confidence 
to deploy or use them operationally. Moreover, adoption of these tools in analysts’ day-to-day work 
is only likely to yield benefits if ML is embedded in the right stages of intelligence analysis, where users 
could conceivably imagine developing sufficient confidence in the ML tool. There is a clear risk to 
deploying an ML capability without a clear understanding of the overall decision-making process which 
it is used to support, as this could damage analysts’ trust and confidence in ML more generally, 
creating challenges for wider adoption of ML for national security.   

2.2 Embedding ML into the intelligence analysis pipeline  

In the near-term, the most frequently cited stage of intelligence analysis where ML was perceived to 
hold potential is in information filtering and prioritisation, to make discovery more efficient or, as one 
interviewee described it, ‘to reduce the signal-to-noise ratio’.27 As summarised by one interviewee: 

‘I wouldn’t rule out [ML-enabled intelligence analysis tools] as part of the chain for anything, 
but it’s more what are the follow on steps, such as kinetic action or advising something is in a 
particular location or police arrests and knocking doors down. It would not be appropriate for 
[an ML tool] to spit out taking those kinds of direct action. You’d need parallel evidence. I 
would be happy to use and trial ML output as part of process like in filtering and collection 
decision, which is so far away from an actual outcome.’28 

Figure 1 presents an overview of the typical intelligence analysis pipeline and corresponding system 
functions, and illustrates where interviewees believed ML would provide the most value. In general, 
the ‘collect’ and ‘process’ stages were identified as being the stages in the pipeline where ML would 
provide the most utility for analysts. The perceived value added by ML decreases as we move down 
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the pipeline towards the decision-making and reporting that ultimately results from the analysis 
process.  

Figure 1. Overview of intelligence analysis pipeline and priority areas for incorporating machine learning* 

 

*This image is illustrative of where in the process stakeholders believed that ML or human involvement is most useful. The 
study team understands these stages of analytic tradecraft may differ in different contexts. 

Returning to the ‘needle in the haystack’ metaphor, interviewees suggested that ML is useful in 
helping to produce ‘piles of hay,’ so analysts need not review ‘the entire field’, but analysts do not 
wish for the ML to decide what the ‘needles’ are.29 Put differently, one interviewee suggested that 
‘complex ML-enabled capabilities are probably too far off, so the emphasis is on procuring faster 
horses rather than cars.’30 In this sense, ‘faster horses’ are systems that get through more data and 
automatically identify information of interest to the analyst, for instance keyword searching. Ideally, 
models would generate outputs that contain tranches of relevant data with some peripheral 
information or ‘hay’ to give the analyst some confidence that nothing is missed.31 The analyst remains 
responsible for any decision-making that then results on the basis of analysing that data.   

Moreover, interviewees suggested that it is important to distinguish between an ML-enabled tool, and 
ML-enabled systems that adopt a ‘teammate’ role. For example, if the system is limited to triage or 
filtering of bulk data, the system is merely a tool performing a narrow task.32 An ML-enabled 
teammate would do more than this and be involved in:  

‘…joint problem solving by helping reinstate memory and helping the analyst recall strands of “the 
big picture” after the weekend. A teammate may also support the analyst by taking notes, evolving 
beside them and “backing them up” when analysts are fatigued or helping them generate audit 
trails of data underpinning their analyses.’33  

 
29 G1& G2; INT3; INT 5; L1; L2; INT2 
30 G1 & G2 
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Such a system could also learn and adapt to how much information the user wants and when the user 
wants to receive alerts, or have an understanding of the legality of situations and rules of 
engagement.34 One behavioural scientist cited previous research that discovered that intelligence 
analysts demonstrated optimal performance at their peak cognitive load before a given saturation 
point,35 so a machine ‘teammate’ might tailor itself accordingly to analysts’ peak cognitive load.36 
Another human factors engineer suggested that future systems might be able to listen to 
conversations between teammates and linkages made by the analyst to point out links that the human 
analysts may be blind to.37 The study team found no evidence of systems of this kind currently in use 
or planned in the near future, but if existing ML tools are accepted and trusted now, then user 
acceptance of more complex systems and ‘teammates’ will be more likely in the future.  

Finally, it is also important to note that the binary distinction often made between ‘human-machine 
teaming’ and ‘automated decision-making’ may be an over-simplification of how ML decision-support 
tools are deployed in practice. In the future, three different types of interaction between human 
analysts and ML are conceivable and warrant further consideration, including an ML model that: 

• Triages a result that the user can validate manually; 

• Produces a result, where the user themselves cannot validate the result manually, but an 
expert could; 

• Produces a result which cannot be validated by human review. 

Future efforts to develop ML-enabled information systems for national security should start with a 
clear understanding of which of these human-machine interaction models best characterises the 
intended use of the system, as this will have direct implications for the design decisions made at the 
development stage of the system.  

  

 
34 INT4 
35 G8 & G9 
36 Richard J. Carter, Cognitive advantage: How artificial intelligence is changing the rules for winning in business and government (London: 
Mayhill Publishing, 2021). 
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3. Technical considerations 
This section explores the technical considerations identified in the research as important to consider 
in the development, design and deployment of an ML system for intelligence analysis.  

As mentioned previously, the research initially focused on the technical concept of ‘AI explainability’, 
meaning tools and techniques that can be used to describe how a model arrived at a particular output 
or prediction. However, the types of explanation that interviewees focused on were much broader 
than the strict technical definition of ML explainability, and participants were more concerned with 
ways that ML outputs and performance could be communicated to a range of stakeholders throughout 
the lifecycle and application of a ML capability. This is the focus of the following section.  

3.1 Determining thresholds: False positives and false negatives  

For ML classification systems, it is necessary for the developer to determine a classification threshold 
above which a data item is categorised into a certain class.  For example, a classification threshold set 
at 0.99 would only create an alert if the model identified a 99% or higher probability that the target 
variable belongs to a certain class. The same model could instead be set to a 0.95 classification 
threshold, meaning a 95% or higher probability would trigger an alert. A lower classification threshold 
inevitably entails a higher number of false positives, while a higher classification threshold increases 
the risk of false negatives. This is a crucial factor to consider in the development of any ML model, and 
attention must be paid to the relative ‘costliness’ of different types of error (i.e., whether it would be 
a worse outcome to create more false positives for a human to review, or to risk more false negatives 
meaning potentially important data items are missed).  

The research found that false negatives are generally considered to be the costliest type of error in an 
intelligence context. Across all decision-making settings (whether ML-assisted or otherwise) analysts’ 
risk appetite for any false negatives is very low. Furthermore, interviews revealed that the risk 
tolerance for false positives is likely to increase in high-stress, time-constrained or high-stakes 
decision-making contexts. This is because the consequences of not taking action in an urgent or high-
stakes situation could be significantly worse than the consequences of incorrectly taking action on the 
basis of a false positive.  

For example, a ML model that is predicting an event or connection of relevance to a high priority 
investigation is likely to be acted upon immediately to avoid any potential risk of harm, whereas for 
lower priority investigations (where there is no immediate risk of harm) an analyst is more likely to 
need convincing of the correctness of the model. As such, in particularly high-priority and time-
sensitive circumstances, an analyst may not require a detailed explanation of why the model produced 
the prediction and nor would they have the time to review such information in an urgent operational 
situation. However, interviewees raised the cautionary note that analysts may lose confidence in a 
system the more false positives they encounter,38 so an analyst’s tolerance for false positives is a finite 
resource and context-specific. 

 
38 G8 & G9; INT4; Patricia McDermott et al., Human-Machine Teaming Systems Engineering Guide, (2018). 
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These observations suggest that a careful balance must be struck to minimise false negatives to the 
lowest possible threshold, while not creating so many false positives that the analyst becomes 
frustrated with the system. Determining this threshold is again likely to be highly context-specific, 
emphasising the crucial importance of user testing of ML classifier models with a group of target users 
prior to their operational deployment, to set an acceptable upper limit on false positives and false 
negatives for any given user group.  

3.2 Different explanations for different audiences 

ML systems used for national security may need to meet a higher level of explainability than those 
used in less sensitive contexts such as the commercial sector. To interpret and explain the output from 
a ML model to the requisite standard for it to be used confidently for intelligence analysis, it is 
insufficient to treat explainability requirements as isolated to a single stakeholder (e.g. the analyst). 
Information on the performance and behaviour of a ML capability should be provided for multiple 
stakeholders, at multiple levels of granularity, and throughout the lifecycle of the ML capability.  

Our research identified the types of information required to provide sufficient explanations to satisfy 
the needs of three different categories of stakeholders involved in the use of ML to support 
intelligence analysis. These are each considered in turn.   

3.2.1. Explanations for the senior responsible owner 

Interviewees emphasised key differences between the explanations required by data scientists or 
those developing policy or approving the deployment of a ML system (the senior responsible owner), 
and the explanations required by analyst end-users.39 While analysts also require key information 
regarding system performance and known limitations, this information needs to be presented in a 
different way for the end user than for those developing or approving the system.  

Crucial to any trust model is an understanding of the system’s limitations and the calibration points 
where performance may differ from the user’s expectation. Some stakeholders discussed the utility 
of a ‘model card,’40 a reference point that explicitly sets out ML system limitations and the intended 
use case for the system. Examples of contextual information that could be contained within a model 
card include: 

• Highlighting the data used and assumptions made in the evaluation procedure documented, 
such as the geographic and time limitations of the data.41  

• Providing quantitative information on the base rate, or prior probability, of an object 
belonging to a target category.42  

 
39 L1; L3 
40 G8 and G9; INT5 
41 Margaret Mitchell et al., “Model cards for model reporting,” ArXiv (2019).; David Lonsdale and Maria dos Santos Lonsdale, “Handling 
and communicating intelligence information: a conceptual, historical and information design analysis,” Intelligence and National Security, 
no. 34 (2019): 703-726.; G3; G4, G5 & G6; L2 
42 Rodgers, R. Scott, “Improving analysis: Dealing with information processing errors,” Air Force Research Laboratory Human Effectiveness 
Directorate Warfighter Interface Division (2006). 
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• Insights on the historical precision and recall performance of the model at different 
classification thresholds.  

• Clearly stating the contexts in which the model can be expected to work less well.43 This 
could include prompts on whether a system is better at translating a written letter in contrast 
to a technical report.  

For those authorising or governing the development and deployment of ML, the most important 
information to convey relates to the performance of the system and any known limitations. Those 
governing the deployment of ML systems may not require output-level explanations (‘local 
explainability’), but rather model-level technical details related to key metrics such as precision, recall 
and classification thresholds (discussed further in subsequent sections). Such technical information 
should be readily accessible in relevant supporting documentation, for instance via the organisation’s 
intranet. Training requirements for users are also a crucial consideration and are discussed further in 
Section 4.5.    

As well as key technical metrics such as precision and recall, it is also important to account for the risk 
of data drift – when the distribution of the target data on which the model is deployed differs 
significantly from the distribution of the training or test data.44 This can lead to significant reductions 
in performance when a model is deployed on new, unfamiliar data, meaning  the model may need to 
be retired or retrained.45 

In addition, those authorising or governing the development and deployment of ML should have 
access to information justifying the necessity and proportionality of access to the data used to train 
the model, and any access to data the model may require on an ongoing basis.46 This is important to 
maintain senior accountability throughout the full development lifecycle.  

3.2.2. Explanations for analysts 

Interviewees highlighted that it is more important for analysts to trust the organisational governance 
of ML systems, rather than be provided with detailed information on their technical operation. If 
internal authorities have tested, accredited and ‘signed off’ a ML capability for mission use, presenting 
an explanation of the operation of the model is less important to the analyst user. System-level 
features, intended use cases and limitations still need to be explained to the analyst for them to 
maintain trust in the model,47 but not to the extent that the level of information provided creates an 
unnecessary cognitive burden. 

Furthermore, stakeholders highlighted that complete trust in the output from a ML model should not 
be the aim of the system since intelligence analysts should never wholly trust an output without 
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verifying it against other information.48 Instead, the user interface should indicate the overall certainty 
in the output (in accessible language), so analysts can calibrate their confidence accordingly.49  

When considering the type and format of explanation provided to analysts, two distinct requirements 
were identified in the research. First, the need for system-level technical properties of the model (such 
as precision, recall and thresholds) to be available when needed, for instance via Wiki pages on the 
organisational intranet. And second, the need for an interactive and layered user interface, 
incorporating click-through functions for analysts to query individual model outputs and be presented 
with more granular information about how certain predictions have been made. The requirement for 
such a local explanation will vary according to context and application. One interviewee described a 
potential layered interface as containing ‘more general detail required for everyone, then if you want 
more info, you find more, and the people who need to know the nth degree are right down the pointy 
end. Most people don’t need to know that much detail but need the ability to go down to different 
stages of detail.’50    

Crucially, there may be variation in analysts’ level of understanding of the technical aspects of the 
system, so explanations of system parameters must be translated into plain English to be accessible 
to all users.51 As summarised by one interviewee:  

‘Analysts are not going to be data engineers or data scientists, so they may not need to 
understand the underpinnings of the model, but knowing the range of what they are designed 
to output. The analyst needs to know what to focus their mind on… “is this a common average 
case?” Just a text description of, “this is what’s been the output before”, and “this is what it’s 
designed to consider”’.52 

When considering the visual presentation of these explanations, analysts require intuitive interfaces 
with simple, clear explanations and visual aids that make use of plain English.53 This should be 
accompanied by the option to ‘click through’ for more detailed information on specific outputs, such 
as the highest scoring features that led to a particular model prediction.54 Documentation containing 
system-level performance metrics such as precision and recall at different thresholds, and technical 
information such as the distribution of the dataset used to test the model, should be available on 
request but not necessarily embedded into the user interface of the software itself.  

3.2.3. Explanations for oversight bodies  

The UK national security community operates within a tightly restricted framework of oversight and 
compliance. For compliance and inspection purposes, it may be necessary to present a log of 
underpinning information that supported conclusions made by analysts and other decision-makers.55 
Decisions may later be challenged as part of a legal process or an operation may have adverse effects, 
leading to an inquiry or judicial review.56 As summarised by one interviewee, ‘It’s the decisions that 
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will be challenged (as part of inquests and so on), and we will need some history and audit trail to 
explain why certain decisions were made.’57 Another characterised this requirement as follows:  

‘You need to be able to say there is an audit trail to explain how those conclusions have been 
reached and why bits of data have been selected […] without going into masses of detail and 
tying people in knots. Sometime people try to justify what they do, but it doesn’t need to be 
long paragraphs with clever words. You just need the core explanation – especially where 
privacy is involved and justifying the necessity and proportionality of a query for information 
or use of certain data.’58  

This audit trail for any data-driven intelligence analysis would need to capture the actions of different 
users involved in the process, as well as the post-hoc rationale for why certain data was accessed and 
analysed. Specifically, this should capture the justification for why such access was judged to be 
necessary and proportionate: ‘This data was accessed by this analyst on this date for this reason and 
the reason that was used in court is because…59’ Another example in the ML context is if a system 
were leveraging supervised learning (where the features or input variables are pre-labelled by a 
human), it would be important to know who generated the data labels used to train the model.60 This 
audit trail is particularly important because the volume of data that could be processed through ML 
systems could change the assumptions surrounding the proportionality of the analyst’s access to that 
data.61  

Figure 2. Overview of information requirements for different stakeholders to enable effective use and oversight of ML 
capabilities 
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These findings highlight the critical importance of ensuring a human-interpretable audit trail of ML-
enriched decision-making in the national security context. While there are various existing standards 
in place to ensure the integrity of analysis processes and subsequent reporting, these will need to be 
adapted to account for the use of ML decision-support systems – particularly if those systems are 
informing a decision process which may have a legally significant effect on an individual. It is beyond 
the scope of this study to elaborate further on the legal considerations raised by the use of machine 
learning and automated analytics for intelligence analysis. The issue of proportionality of intrusion of 
automated analytics is the focus of a separate ongoing CETaS research project, with a final report 
expected in early 2023. 

3.3 Factors influencing the required granularity of explanation  

Finally, interviewees agreed that ML tools for intelligence analysis do not need to be perfect or fully 
explainable. Numerous factors influence the degree of detail that may be required to explain technical 
attributes of the model or individual outputs. Key findings in this regard were as follows. 

The complexity of explanation should be determined by the complexity of the problem. If a problem 
is cognitively straightforward for a human, an explanation of an ML solution to that problem is 
unnecessary and does not help decision-making.62 For example, if a model suggests that an image 
looks like it contains a firearm, an explanation of why it produced that result is unlikely to help the 
analyst – they can simply verify the image in question and make their own judgement as to whether 
it contains a firearm. However, for more complex tasks which cannot be easily completed by a human 
(for instance, identifying patterns and connections across large volumes of bulk data), it is more 
important for the model to provide some reasoning as to how it arrived at a certain output.   

The higher the likelihood that a significant decision will be made on the basis of a model output, the 
more detailed the explanation should be.63 The model explanation should be proportionate to the 
severity of the impact of the decision. For example, if a ML model serves the wrong advert to someone 
on a shopping website, there is little need for a detailed explanation of why that happened. However, 
if the decision could significantly impact human rights, then there would need to be a more detailed 
explanation of the factors that the ML used to produce an output.64 

As the level of detail required regarding technical attributes of the model or the features that led to 
individual outputs is dependent on a range of factors, it is unfeasible for model developers to prescribe 
model-level explainability requirements that are appropriate for the full range of potential contexts in 
which a model may be deployed. This emphasises again the need for a layered approach, whereby key 
technical attributes about the model are available on demand as required (for instance, in supporting 
documentation available on an organisational intranet page), and explanations related to individual 
model predictions are provided with varying levels of granularity as part of a ‘click-through’ interface.  
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4. Management processes and structures  
The previous sections detailed the technical requirements that must be considered at the 
development stage for a ML system used to support intelligence analysis. In addition to ensuring these 
technical requirements are in place, some adaptations to management structures and processes 
should also be considered to facilitate the effective and responsible use of ML systems for intelligence 
analysis. This includes formalised processes for designing and commissioning ML-enabled systems, 
the standardisation of language and processes, early testing and prototyping of new ML-enabled 
systems with analysts, and standardised ML operations processes throughout the full software 
development pipeline. 

4.1 Diversity of thought  

The research highlighted the critical importance of ensuring that a wide range of relevant stakeholders 
are involved when developing the requirements for ML-enabled tools to support analysts,65 including 
end-users, user researchers, behavioural scientists and software engineers with appropriate support 
from policy managers. End-users must be involved in requirement setting to ensure that systems aid 
rather than hinder their work, as well as to avoid the perception that the system is being enforced 
upon analysts, which could contribute to rejection of the system. As one interviewee said, ‘If the 
analysts understand how the process works, they become part of it rather than it being something 
that is done to them’.66  

Analysts interviewed stated that they would endorse the involvement of user researchers and 
behavioural scientists when developing interfaces for ML systems in order to optimise the overall user 
experience (e.g. by preventing ‘cognitive overload,’ when human working memory is oversaturated 
and starts to reduce the analyst’s capacity to take in information or execute tasks). One successful 
example of this approach is the US Defense Advanced Research Projects Agency (DARPA) Explainable 
AI programme, which has involved research teams comprising both technical AI/ML specialists, and 
psychologists who understood the limitations and common failure modes of human decision-making 
and biases.67  

4.2 Standardisation of terminology and explainability practices 

Experts unanimously emphasised the need for standardisation of linguistic terminology when 
communicating technical information related to ML models and their outputs. This should also be 
accompanied by establishing universal explainability standards for ML systems used across 
government, partners and suppliers.68 

It was noted that there is currently no standard approach to ML explainability, and no gold-standard 
test that can be run on an explanation to assess the utility of that explanation. The following forms of 
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assurance were suggested to ensure better standardisation of ML explainability practices, as well as 
the linguistic communication of technical information: 

• Use plain English and consistent terminology to describe the technical performance and 
limitations of the model (such as expected false positive and false negative rates, and 
classification thresholds).  

• Define and publish precision and recall rates at different thresholds, so analysts can interpret 
the current performance of the model. Interviewees also highlighted that error rates do not 
necessarily explain the value of the insights generated.69  

• Verification and validation procedures for approving and releasing a model into operational 
use.70 

Several ongoing initiatives may be drawn upon to harmonise and streamline standards related to ML-
enabled information systems for intelligence analysis, for instance the MITRE 2018 Human-Machine 
Teaming Systems Engineering Guide.71 Alongside standardisation of linguistic terminology and 
explainability practices, further research is also needed to explore the integration of ethical 
considerations into the development and deployment of ML models used in this context.  

4.3 The importance of user testing  

There was strong recognition of the need for user testing of ML systems prior to full operational 
deployment. Interviewees suggested that the most effective and safe way to integrate ML into analyst 
workflows is to trial an ML system as a proof-of-concept or sandbox environment that analysts can 
experiment with. Lessons learned from such initiatives should guide further development and 
deployment of the capability, for instance to develop a better understanding of the error rate of the 
system, and users’ tolerances for false positives vs. false negatives, which could help developers assess 
how to optimise the model’s thresholds.72 There was also recognition of the importance of adopting 
standard software engineering practices into the ML development and testing process. 

Controlled trials could also be conducted as part of the user testing and evaluation process. For 
example, a trial could compare the error rates and speed of using ML tools to complete intelligence 
analysis tasks, in contrast to conducting the task without ML, to assess whether the ML system has 
made a positive and beneficial difference.73 An interviewee described how ML capabilities were 
initially introduced to support low-risk tasks and then gradually introduced into higher-stakes decision 
contexts as user acceptance grew.74 Another interviewee highlighted that ‘The gold standard for 
assessing an explanation is still probably a well-designed human subjects research study to assess in 
a specific operational context what is the value of an explanation’, and specifically to assess the right 
level of explanation for a particular user community.75  
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There was general agreement that the lessons learnt from controlled experiments and ML user testing 
provide helpful evidence for future deployments, and should be routinely shared with partner 
organisations deploying similar ML-enabled information systems.76 

4.4 Resource requirements 

There was universal recognition of the significant resource investment required to develop sustainable 
and high-quality ML systems. Some interviewees noted the risk of not investing appropriately in the 
skills, infrastructure or governance of ML-enabled systems, which could lead to poorly performing 
models that are nevertheless still used by analysts. Consideration should therefore be given to how to 
sustain ML-enabled systems such that the necessary standard of development, deployment and use 
is maintained. One interviewee raised the specific example that retraining a particular ML system had 
proven to be prohibitively expensive.77 Another raised an example of a system requiring a legal process 
to change the extraction rules every time it was used, highlighting an issue that needed to be 
addressed before the system was deployed on a larger scale.78  

There was concern that some organisations may not have any guidance in place regarding the 
development and deployment of ML systems, nor the resources or expertise required to develop such 
guidance. Devoting resource to forecasting such potential bottlenecks in development before fielding 
a capability would be beneficial to organisations committed to deploying an ML-enabled information 
system. Furthermore, some interviewees mentioned that knowing when to decommission and retire 
a ML capability, and having a well-documented and understood process to make such decisions, would 
also be key to ensuring that scarce resources are freed up and re-deployed efficiently. 

In summary, there was recognition that technical explainability alone is not sufficient to ensure 
responsible and trustworthy use of ML for intelligence analysis. Instead, a range of organisational 
policies and processes are required to govern the full development and deployment lifecycle, from 
the stage of when the system is being scoped and conceptualised, through to trialling and evaluation, 
and ongoing monitoring and evaluation of performance.  

4.5 Training and support  

Finally, there were mixed responses from interviewees regarding the level of training and support 
required for users to effectively exploit ML systems. Some interviewees suggested that analysts should 
not need considerable additional training,79 although an improvement (or at least a well-defined 
baseline) in all analysts’ data literacy and foundational understanding of ML would be beneficial to 
overall analytic tradecraft. Others suggested that dedicated training programmes should be 
established to upskill analysts in the use of ML. It was also suggested that skills development could be 
geared at training a portion of more technically skilled analysts to build models that support 
intelligence analysts themselves. The role of data scientists to provide deep support to analysts was 
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also cited by interviewees, and should be considered as part of the work environment for using ML-
enabled tools. 

Interviewees generally agreed that there is a need to ensure that data literacy is increased across the 
community, and that the analyst workforce is ‘knowledgeable about our data, where it comes from, 
and what processes we apply to it. We need this before we get anywhere near ML’.80  

Interviewees stated that it may not be necessary for analysts to have in-depth expertise on ML. 
However foundational knowledge on common ML limitations would help users calibrate the level of 
trust they should attribute to any ML capability.81 As one interviewee summarised, ‘The training I want 
is teaching analysts to be intelligent consumers of ML outputs’.82 In high-stakes contexts where users 
are required to retain a high degree of accountability for individual decisions, it is all the more 
important to avoid potential over-trust in ML systems, and effective training was seen as crucial in this 
regard.  

Some interviewees suggested that intelligence analysts are trained and experienced in working under 
conditions of uncertainty and therefore may not need further training in this regard,83 while others 
expressed concern that automating some parts of the intelligence process may remove elements of 
reflective thinking (automation bias).84 Part of securing analyst buy-in could mean developing some 
analysts’ skills to build ML-enabled tools for other analysts, described as the ‘democratisation of data 
science’ – enabling more people with only limited expertise to conduct data science tasks with 
sufficient data and user-friendly tools – generating confidence in the model and the safeguards 
embedded within the system.  

Finally, it was also suggested that data science should be offered as a ‘support service’ to analysts 
using ML-enabled tools operationally. This could benefit both the data scientist and the analyst as 
each becomes more familiar and aware of the knowledge of the other.  
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5. Further research 
This study was inevitably limited in scope, as it focused specifically on the technical and policy 
considerations regarding the use of machine learning to support intelligence analysis, with an 
emphasis on explainability. Several closely related topics were also identified in the research and are 
recommended for further investigation.   

5.1 Human-machine teaming 

The difference between ML as a tool and ML as a team-mate for an analyst is significant and important. 
To treat a ML-enabled system as a ‘team-mate’, analysts need to be confident in delegating tasks, 
treating suggestions and outputs from the machine with the same level of consideration as a fellow 
analyst, and possibly even allowing the machine to set its own goals. This can best be understood as 
the distinction between a ‘decision-support tool’ and human-machine teaming (HMT).85  

The technical, psychological, operational, legal and ethical considerations of HMT are broader and 
more complex than a ML decision support tool. Future considerations for HMT within intelligence 
analysis should be investigated further, building on the insights from this research and the broader 
field of research into human-machine teaming. Some stakeholders suggested that future HMT 
systems should enable analysts to ask questions, rather than just presenting information.86 One 
interviewee proposed that ‘an ideal system could be a bit feisty or argumentative’,87 to prompt the 
analyst to consider countervailing hypotheses and mitigate cognitive biases. At the same time, a 
behavioural scientist highlighted that ‘you don’t want something that questions everything you do or 
people will just turn it off’.88 There is therefore an important balance to be struck in terms of how the 
outputs and suggestions from the system are presented to users, to enable optimal teaming of both 
human and machine capabilities. 

Dialectic communication could also take the form of regular human feedback loops for the user to 
relay the usefulness of the ML output, and for the system to learn from the analyst’s method of 
enquiry.89 A prompt to an analyst might say, ‘This classifier has a 90 per cent accuracy rate, and by the 
way, at 10pm, we are going to send you 10 random data inputs, could you please classify them?’90 
These exchanges could be particularly valuable in the case of online learning systems, which can 
improve their performance and optimise precision and recall over time in response to user feedback.91 
This is a promising avenue for further research and warrants detailed scrutiny.  

 
85 Mariarosaria Taddeo et al., “Artificial Intelligence for National Security: The Predictability Problem,” CETaS Research Reports (September 
2022). 
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5.2 Automated Decision-Making 

Automated decision-making – where a machine-generated insight could instigate real-world action in 
the physical or information domain – was mentioned during interviews, but was largely outside the 
scope of this research. Some factors were perceived to overlap, such as the importance of context to 
the perceived level of risk and the need for extensive testing with human experts. Nevertheless, the 
level of risk, and therefore the level of oversight and explainability required, for using automated 
decision-making was deemed considerably higher. The realistic use of automated decision-making in 
the intelligence analysis workflow should be comprehensively investigated. 

5.3 Human-centred engineering of ML/AI applications 

A major insight from this study is the importance of understanding how intelligence analysts think, 
behave and act, and then developing the ML capability to complement and support the analyst.  It is 
not sufficient to take a dataset, develop a ML model, and yield useful information from it. That insight 
needs to be of value to the analyst. We have already highlighted the need for behavioural scientists 
to be involved, along with analysts themselves, in the development of ML capabilities. We recommend 
taking this a step further to develop a methodology for integrating analyst-centred design in 
multidisciplinary capability development teams. The emerging field of decision intelligence, 
behavioural science methods such as target audience analysis, software engineering disciplines such 
as UX (User Experience) and UI (User Interface) design, and data science hypothesis-driven project 
design, all provide key ingredients. What is now needed is the recipe (methodology) to bring the right 
mix of skills, experience and tools to comprehensively understand the intelligence analyst. This should 
be central to any future research efforts to develop and design ML systems for use in an intelligence 
analysis context.  

5.4 Technical requirements for users from different 
backgrounds 

Finally, a key finding of this study was the importance of user context, as different users will require 
differing levels of technical information regarding a ML system and how it is operating. However, given 
the resource and data sample limitations of this study, it was not possible to explore every factor 
relevant to the user context, or to systematically assess how the explainability requirements of users 
varies across background. This study focused primarily on the factors related to the user’s role (an 
intelligence analyst), but more specific recommendations may be given for different types of 
intelligence analysts across different backgrounds and contexts. This is an important avenue for future 
research and warrants further consideration. Finally, given the wide range of stakeholders required to 
interpret ML-supported analysis, further work should seek to develop a standardised lexicon of 
terminology for communicating the confidence associated with ML-supported analysis (for instance 
based on the PHIA probability yardstick). 
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